NAD(P)H: Quinone Oxidoreductase 1 Deficiency Conjoint with Marginal Vitamin C Deficiency Causes Cigarette Smoke Induced Myelodysplastic Syndromes
نویسندگان
چکیده
BACKGROUND The etiology of myelodysplastic syndromes (MDS) is largely unknown. Exposure to cigarette smoke (CS) is reported to be associated with MDS risk. There is inconsistent evidence that deficiency of NAD(P)H-quinone: oxidoreductase 1 (NQO1) increases the risk of MDS. Earlier we had shown that CS induces toxicity only in marginal vitamin C-deficient guinea pigs but not in vitamin C-sufficient ones. We therefore considered that NQO1 deficiency along with marginal vitamin C deficiency might produce MDS in CS-exposed guinea pigs. METHODOLOGY AND PRINCIPAL FINDINGS Here we show that CS exposure for 21 days produces MDS in guinea pigs having deficiency of NQO1 (fed 3 mg dicoumarol/day) conjoint with marginal vitamin C deficiency (fed 0.5 mg vitamin C/day). As evidenced by morphology, histology and cytogenetics, MDS produced in the guinea pigs falls in the category of refractory cytopenia with unilineage dysplasia (RCUD): refractory anemia; refractory thrombocytopenia that is associated with ring sideroblasts, micromegakaryocytes, myeloid hyperplasia and aneuploidy. MDS is accompanied by increased CD34(+) cells and oxidative stress as shown by the formation of protein carbonyls and 8-oxodeoxyguanosine. Apoptosis precedes MDS but disappears later with marked decrease in the p53 protein. MDS produced in the guinea pigs are irreversible. MDS and all the aforesaid pathophysiological events do not occur in vitamin C-sufficient guinea pigs. However, after the onset of MDS vitamin C becomes ineffective. CONCLUSIONS AND SIGNIFICANCE CS exposure causes MDS in guinea pigs having deficiency of NQO1 conjoint with marginal vitamin C deficiency. The syndromes are not produced in singular deficiency of NQO1 or marginal vitamin C deficiency. Our results suggest that human smokers having NQO1 deficiency combined with marginal vitamin C deficiency are likely to be at high risk for developing MDS and that intake of a moderately large dose of vitamin C would prevent MDS.
منابع مشابه
Evaluation of the risk of lung cancer associated with NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in male current cigarette smokers from the Eastern India
NAD(P)H: quinone oxidoreductase 1 (NQO1) is an endogenous cellular defence mechanism against several carcinogenic quinones derived from cigarette smoke. NQO1 C609T polymorphism is a strong determinant of NQO1 structure and function. The people with mutant allele for this polymorphism has significantly reduced NQO1 activity. In this study, we tried to evaluate the risk of lung cancer as...
متن کاملEffects of 5-azacytidine and methyl-group deficiency on NAD(P)H: quinone oxidoreductase and glutathione S-transferase in liver.
Treatment with 5-azacytidine or dietary methyl-group deficiency effected DNA hypomethylation in mouse liver. With these treatments, NAD(P)H: quinone oxidoreductase (EC 1.6.99.2) and some glutathione S-transferase (EC 2.5.1.18) activities were over-expressed, lactate dehydrogenase (EC 1.1.1.27) activity was unaffected and the level of cytochrome P-450 was decreased. The 5-azacytidine induction o...
متن کاملDetection of NAD(P)H: Quinone Oxidoreductase 609C T Polymorphism in Blood and Archival Human Tissues Using a Simple PCR Method
متن کامل
The importance of plasma membrane coenzyme Q in aging and stress responses.
The plasma membrane of eukaryotic cells is the limit to interact with the environment. This position implies receiving stress signals that affects its components such as phospholipids. Inserted inside these components is coenzyme Q that is a redox compound acting as antioxidant. Coenzyme Q is reduced by diverse dehydrogenase enzymes mainly NADH-cytochrome b(5) reductase and NAD(P)H:quinone redu...
متن کاملChloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation.
Lipid droplets are ubiquitous cellular structures in eukaryotes and are required for lipid metabolism. Little is currently known about plant lipid droplets other than oil bodies. Here, we define dual roles for chloroplast lipid droplets (plastoglobules) in energy and prenylquinone metabolism. The prenylquinones--plastoquinone, plastochromanol-8, phylloquinone (vitamin K(1)), and tocopherol (vit...
متن کامل